//
you're reading...

Conservation

Survival at different stages of the fishing process informs management strategies for the silky shark

Hutchinson, M.R.; Itano, D.G.; Muir, J.A.; Holland, K.N. Post-release survival of juvenile silky sharks captured in a tropical tuna purse seine fishery. Marine Ecology Progress Series 521: 143-154, 2015. doi: 10.3354/meps11073

Why we care

Environmental conservation is difficult (if you’ve read my other OceanBites posts, you’ll know that this is something I think about a lot). To achieve conservation success in the long term, you must balance the interests of many different people who want to use a resource, know why a species is declining, and have a solution that is sustainable both economically and culturally.

This article deals with the middle issue listed above: knowing why a species is declining. One of the largest impacts humans have on ocean species is through our consumption of seafood. This obviously requires that species be harvested from the ocean, but harvesting methods often unintentionally negatively affect other, non-target species.

Identifying species that are caught as bycatch is unfortunately not enough information to craft a good conservation solution. For example, if you are fishing for bass in a pond but catching bluegill, should you change the type of bait you’re using? Or the time of day you’re fishing? What about the area of the pond where you’re casting your line? These issues get much more complicated when many boats with complex fishing techniques are operating in an area where a species of conservation interest lives.

These authors worked with silky sharks unintentionally caught in purse seine nets. These are circular nets deployed from the water’s surface around a school of target species and then pinched together below these fish like a coin purse, similar to pulling a drawstring to close a bag. Purse seiners sometimes deploy electronic devices, called Fish Aggregating Devices (FADs), into the ocean to attract fish. These are free-floating and each one sends data to fishermen on its location and how much biomass is in the water beneath it. Of the sharks, skates, and rays, silky sharks are by far the most often caught in FAD-associated purse seines. Scientists have previously shown that the survival in silky sharks caught in purse seine nets and then released is less than 20%. The silky shark is an important component of ocean food webs, but it is currently being overfished. Understanding mortality associated with purse seine fishing is an important step in managing silky shark populations.

The authors sampled sharks throughout the entire fishing process, including after the sharks were released, to determine which step was most responsible for shark mortality. Their results could be directly applied to shark management strategies in areas where purse seining is common.

Methods

The authors spent 41 days aboard a normally fishing purse seine vessel in the western and central Pacific Ocean. During this time, they observed sharks incidentally caught in 30 fishing sets associated with FADs and 1 set where no FAD was used. Prior to net deployment, they captured and sampled silky shark blood chemistry to determine chemical stress levels when sharks were exposed to only a minimum amount of handling that did not include being caught in purse seine nets. They then sampled sharks during 4 stages of the fishing process, when they were:

2.24.1

The western central Pacific and the location of purse seine fishing sets studied by the authors (closed circles).

1) Encircled by a half-closed net but were still able to swim freely,

2) Entangled in the net but not hauled aboard the fishing vessel,

3) Landed on the fishing vessel and encountered as soon as the net was open (so they were on top of the individuals hauled in), and

4) Landed on the fishing vessel and encountered only after the net was initially opened (so they were on board the vessel longer and were subjected to more weight being put on top of them while aboard).

Sharks were released after sampling and were scored qualitatively for the way in which they swam away from the area. Live sharks were equipped with satellite tracking tags used to quantify post-release behaviors. Sharks that survived 10 days or more were considered to have survived their encounter with the fishing vessel.

Results

295 juvenile silky sharks were captured while at sea and 28 sharks were fit with satellite tags. Of the chemicals analyzed in the sharks’ blood, lactate concentrations emerged as the most appropriate predictor of shark survival (based on lactate concentrations paired with satellite tag data). Since the authors were unable to tag every shark captured in this study, they used lactate concentrations as a proxy for survival for the 267 sampled but untagged sharks.

Silky shark survival rates were 100% for those sharks caught before fishing began and after having been encircled by the net (stage 1). Sharks that were entangled in the net but not brought on-board the vessel (stage 2) had a 68.7% survival rate, while survival rates declined to 16.7% for sharks landed with the catch (stage 3). Sharks encountered at the end of sifting through the catch (stage 4) only survived 6.7% of the time. Overall, sharks brought on board the boat (sampled during stages 3 – 4) and then released into the ocean only survived the incident 15.8% of the time.

2.24.2

Qualitative scores assigned to each released silky shark captured before fishing began (“Pre-set”) and during the 4 stages of purse seine fishing (“Encircled” through “Brail”, respectively). A single brail is a scoop of the catch removed from the net and dumped on the deck of the vessel for processing, so sharks sampled from the first brail were onboard the vessel for less time and were released earlier than those sampled during later brails.

This study also included an analysis of the differences between the number of sharks caught as reported by fisheries observers, vessel crew members, and the scientists. Satellite tag data on shark behavior was also aggregated and analyzed.

This study is one of the first to analyze in detail silky shark mortality associated with purse seine fishing. The trauma experienced by sharks hauled aboard the fishing vessel enormously increased the probability of shark death. Observations while SCUBA diving and recorded on video suggest that sharks become exhausted while struggling against the net during entanglement, making breathing while onboard much more difficult and leading to higher mortality rates

While avoiding sharks in the first place would be ideal, this study highlights both the importance of good release practices before a purse seine catch is hauled onto a fishing vessel and the ineffectiveness of release after a shark has been landed with the catch. Management efforts that focus on release solutions before sharks come onboard are therefore likely to be most effective in increasing silky shark survival and ultimately impacting shark abundance.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com