you're reading...


Ancient swimmers: Greenland sharks live for centuries


Nielsen, J., Hedeholm, R. B., Heinemeier, J., Bushnell, P. G., Christiansen, J. S., Olsen, J., … & Steffensen, J. F. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus).Science353(6300), 702-704. DOI: 10.1126/science.aaf1703.


The world’s oceans are home to wild and wacky animals that exhibit incredible biology, some of which we have shared with you here on Oceanbites. To name a couple, we have covered mollusks with the gift of vision, and lobsters that orient with magnetism. These discoveries are so important because we still do not know much about life in the ocean. Today, I am going to share with you another recent discovery involving a marine animal, the Greenland shark, which is thought to defy the laws of aging.

Greenland sharks are fascinating animals (Fig. 1). They are large sharks capable of growing to lengths of 16 to 21 feet (the size of your typical car). These slow swimmers live in the deep, cold waters (up to 6,000 feet below the surface) of the North Atlantic Ocean, making them rare to spot at the surface. Greenland sharks are especially unique because of their extremely slow growth rate, growing less than 1 centimeter longer each year. Given their cold water habitat and slow growth, researchers believed the Greenland shark had a pretty long life span. But, just how many years are we talking? 50 years? 100?

Using clever methodology, researchers may have found the answer to this question.


Figure 1: Greenland sharks are also known for collecting parasites over their life. This individual has a parasite attached to its eye. Image credit: Sciencemag.org

Measuring age:

Most fish have inner ear bones called otoliths that are used in aging studies by counting rings of bone deposited over time, much like counting rings in a tree. However, this method does not work with Greenland sharks because, like all sharks, their skeleton is made of cartilage with no hard, ossified tissue (except for teeth). To work around this, researchers measured radiocarbon isotopes (different variations of radioactive carbon) in the nuclei of the shark’s eye lens. Why use the eye lens? Tissue within the nucleus of the eye lens was first made when the shark was born and retains its chemical signature over the shark’s life. Therefore, by targeting this innermost lens tissue, scientists can determine how much radiocarbon was present in the lens when the shark was born.

Due to thermonuclear bomb testing in the 1950’s, a large amount of extra radiocarbon was produced in the atmosphere and absorbed into the ocean. This excess radiocarbon was taken up by marine life and moved up the food chain, eventually accumulating within the tissue of apex predators like Greenland sharks. Bomb-related radiocarbon is still in the ocean today and being absorbed by the sharks, which is useful information because sharks with more radiocarbon in their eye lens were likely born after the bomb event of the 1950’s.

For the study, 28 female sharks were collected in the North Atlantic Ocean; a sample of lens tissue was taken from each as well as a general measurement of their body length. Radiocarbon measurements were correlated with shark length and plugged into a model to estimate age.


Figure 2: The amount of radiocarbon shown as pMC (percent modern carbon) found in shark’s post-bomb (white), during the bomb (red), and pre-bomb (blue). The dashed vertical line shows the onset of effects from the bomb event.

How old are Greenland sharks?

Out of 28 sharks, the two smallest sharks they collected had very high levels of radiocarbon, indicating they were likely born after the bomb event (Fig. 2). The third Greenland shark in the chronology had a radiocarbon level slightly above the remaining 25 sharks, placing it near the actual bomb event (around 50 years old). The remaining 25 sharks were classified as pre-bomb because they were born before the 1950’s (Fig. 2).

Using the three smallest sharks as a starting point, age ranges of the other 25 sharks were estimated based on their body lengths (Fig. 3). From the model, the largest female (16 feet) was predicted to be the oldest since the older sharks have had more time to grow and should be the largest (Fig. 3). They estimated the age of the oldest shark to be as young as 272 years and as old as 512 years. Because radiocarbon dating provides an estimate, the exact date could not be determined, but she was likely somewhere in the middle of that age range – around 400 years old. This is a mind-blowing discovery! This would mean there are Greenland sharks that have been swimming around in the ocean since before the signing of the Declaration of Independence, the beginning of the Industrial Revolution, or even the invention of the light bulb. Even at their modest prediction of 272 years old, this finding makes Greenland sharks the longest-living vertebrate on the planet!


Figure 3: Output from the model showing total length vs. age for pre-bomb sharks. The modeled age ranges for each shark are shown in dark blue. Shark length increases exponentially with age.

Ramifications of a long life:

The fact that Greenland sharks may live for 400 years is amazing, but also raises concerns about their conservation. From their radiocarbon predictions, researchers believe Greenland sharks do not reach sexual maturity until they are about 150 years old. A single human can be born, have multiple children, and die before a Greenland shark is able to reproduce for the first time! Ultimately, this means that the species is vulnerable and cannot rebound from threats quickly.

Greenland sharks have been historically overfished and were heavily exploited for their liver oil during the early 1900’s. As a result, most of the Greenland sharks alive today are young, around 100 years old, and not reproductively mature yet. To make things worse, Greenland sharks are still caught unintentionally in broad scale longline, gillnet, and trawl fisheries that target commercial fish like halibut. Greenland sharks that become tangled in fish line or incidentally caught often die or are discarded back to the ocean in a damaged state. Currently, there is no concrete set of guidelines or regulations for the fishing of Greenland sharks and rules that are in place are loosely enforced. Moreover, because they spend so much time at depth, there is not enough information about the abundance of Greenland sharks in the North Atlantic and so they cannot be placed on the endangered species list.

There have been efforts to tag and monitor these sharks and more observations are necessary to better understand their behavior and life history. But considering the slow growth, long life span, and low reproductive output of this species, we also must increase our conservation efforts by enforcing tighter restrictions on commercial fishing and limiting bycatch. Better management of fisheries in the North Atlantic Ocean is going to become increasingly important to the success of Greenland sharks as melting sea ice in Arctic waters will open up more fishing zones in the future.

The bottom line is that Greenland sharks simply cannot reproduce at the rate at which they are currently being exploited. Without our help, we may lose these ancient and fascinating sharks from our oceans.

Check out the following links for more information on Greenland sharks:




No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 11 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com