//
you're reading...

Biological oceanography

Tiny but tough: calcification in marine phytoplankton

Article:

Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E., Poulton, A. J., … & Gutowska, M. A. (2016). Why marine phytoplankton calcify. Science advances2(7). DOI: 10.1126/sciadv.1501822.

Introduction:

In many ways, coccolithophores are just like any other type of phytoplankton—they are single-celled, microscopic algae that use sunlight for energy. Unlike other phytoplankton, coccolithophores surround themselves with plates called coccoliths, which are made of calcium carbonate (the same material mollusks use to build shells). At times, coccolithophores can become so dense in the water that their chalky, white plates can be seen from space (Fig. 1).

cocco bloom

Figure 1: A chalky, white coccolithophore bloom visible from space. Image from NASA.

What makes coccolithophores so important is their role in the global carbon cycle. Carbon dioxide is naturally absorbed from the atmosphere into the ocean and coccolithophores use carbon dioxide as building material for their plates. When coccolithophores die or stick together, they sink out of the surface water, transporting this carbon to the deep ocean.

Despite their important contribution to carbon cycling in the ocean, we do not fully understand why coccolithophores are the lone phytoplankton group to calcify. Monteiro et al. (2016) compiled information on the diversity and physiology of coccolithophores and their coccoliths to determine reasons for calcification. A better grasp on the role of calcification in coccolithophores under present conditions may help us understand how they may respond to future climate change.

Remarkable diversity:

Cocco diversity

Figure 2: Coccolithophores come in all shapes and sizes, highlighting the diversity within this group. Scale bar represents 5 µm.

As a result of its commonality in the ocean, Emiliania huxleyi (see title figure) has become the “poster child” for coccolithophores. While E. huxleyi may be the most abundant species, it is not the only coccolithophore. In fact, a spectacular array of diversity exists between coccolithophore species, especially in the size and architecture of their surrounding coccoliths (Fig. 2). The number of coccoliths per cell can vary from as few as six to several hundred and be arranged in single or multiple layers. The coccoliths themselves range from simple disk-like shapes to more elaborate spine- or trumpet-shaped projections (Fig. 2). Why do coccolithophores have these diverse and elaborate plates?

The researchers found several possible benefits for coccolithophores to calcify. The more promising explanations are described below.

Enhanced photosynthesis:

The two main ingredients any phytoplankton cell needs to undergo photosynthesis are carbon dioxide and sunlight. Calcification may help coccolithophores obtain more of these essential ingredients (Fig. 3A). When coccolithophores calcify, they are thought to naturally concentrate carbon dioxide around the cell, making it more readily available for photosynthesis. In addition, coccoliths scatter light and can be arranged around the cell to maximize sunlight collection, which may come in handy if coccolithophores are deeper in the ocean or during a cloudy day.

Calcification could be a means of capturing more sunlight or a way to protect against it. Sunlight can become damaging to phytoplankton that are directly at the surface and calcification may help to protect coccolithophores from this potential photodamage (Fig. 3B). Coccoliths can literally act as a sunshade, deflecting harmful light or ultraviolet (UV) rays before they reach the interior cell or act as a sponge to absorb light. Ultimately, how coccolithophore species use their coccoliths depends on where they are in water column (e.g. shallow vs. deep).

Cocco benefits

Figure 3: The three main benefits of calcification in coccolithophores include (A) accelerated photosynthesis, (B) protection from the sun and (C) defense against predation.

Protection from predators:

The most compelling reason for coccolithophores having calcified plates was not involved with photosynthesis, but rather predation. According to Monteiro et al. (2016), the coccosphere (combination of all coccoliths) likely exists as a form of armor for the inner cell, shielding potential invaders from sneaking within the plates or ingesting the cell whole (Fig. 3C). To give you an idea of how well this protection works, consider the smallest possible invader in the ocean – the marine virus. For a virus to infect a coccolithophore host, it needs to make its way past the coccosphere and to the inner cell. In some cases, holes between and within coccoliths are so small (<200 nanometers) and packed with carbohydrates that even viruses cannot squeeze through.

But, what if the potential grazer was much larger than the coccolithophore? Some coccolithophores can avoid being eaten by plankton grazers by enlarging their coccosphere or adopting elongated or spiny plates (see Fig. 2 for examples). Better yet, coccolithophores can extend or modify their coccoliths in real-time during an attack. Grazers may also choose to avoid ingesting coccolithophores altogether because their carbonate plates have low nutritional value and aren’t worth the effort.

Discussion and significance:    

Coccolithophores likely first adopted calcification as a means to protect themselves against predators though other benefits, such as those relating to sunlight, have helped to shape the diversity in coccoliths seen today. The variability in coccolith size and shape is thought to be driven by the particular habitats occupied by different coccolithophore species. For instance, coccolithophores who reside in shallow water will want to have plates that shield from overexposure to light, whereas deep-dwelling species will want plates that are arranged to funnel any possible sunlight.

Coccolithophores are important in both their role as primary producers at the base of marine food webs and for their increased contribution to the carbon cycle via the sinking of heavy coccoliths. How may these important phytoplankton species respond to a changing climate?

Changes in seawater chemistry associated with ocean acidification pose the scariest threat to coccolithophores. Over time, a more acidic ocean (lower pH) may place stress on the ability of coccolithophores to build their carbonate plates. If coccolithophores cannot efficiently build their plates, they may become more susceptible to predation and harmful sunlight exposure. Furthermore, as calcification is tightly linked to photosynthesis, a decrease in calcification may lower coccolithophore growth and in turn alter rates of carbon cycling in the ocean. To better assess these potential impacts under future climate scenarios, we need more information on the physiology and tolerance of a wider range of coccolithophore species.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com